2

The Curriculum and Assessment Plan

Adopting standards is a necessary step toward improving student learning. But the work put into creating a standards document will have little long-term effect without definite decisions about who teaches and assesses standards and when. Although the decisions seem simple and straightforward, few schools and districts take their standards and create explicit plans for how to implement those standards in the classroom.

Strengths and Limitations of Scope-and-Sequence Documents

Historically, the design of local curriculum has been synonymous with the publication of scope-and-sequence documents for various subject areas. These documents show a progression of content and skills for grades K–12. Sometimes the content and skills are spelled out in minute detail; at other times they are described in general terms. Sometimes the scope-and-sequence documents reflect materials being used; at other times, curriculum committees develop scope-and-sequence documents based on research and best practice.

The process of developing a scope-and-sequence document engages those involved in important conversations about critical
content and skills. Shared understandings and commitments evolve from these conversations. Other advantages of a scope-and-sequence document are that content and skills are broken down in logical progressions and the documents make public what is to be taught and learned in the school or district.

Unfortunately, we have found several disadvantages to the scope-and-sequence approach, particularly in a standards-based environment:

- Not all schools and districts have the content or curriculum expertise in all subject areas to enable them to develop accurate, high-quality scope-and-sequence documents.
- When the contents of the scope-and-sequence documents are added together, the materials are often more than even the most capable students could possibly learn in grades K–12. Thus, teachers discount the scope-and-sequence documents, and they use materials inconsistently.
- Scope-and-sequence documents are often developed by different committees of teachers, therefore they use different formats and language. Therefore, the documents are difficult to use with one another, which is a key challenge for elementary teachers who are responsible for teaching all subject areas.
- Scope-and-sequence documents typically lack an explicit link to student performance. Therefore, curriculum accountability addresses what is “covered,” not what is learned.
- Scope-and-sequence documents usually give little guidance for instruction or assessment.

Once they adopt standards, many schools and districts revise existing scope-and-sequence documents to show which content and skills relate to which standards. This approach makes an explicit commitment to standards, but this work is not enough for
planning standards-based learning. Too often the connections are weak or insufficient, consequently some standards get left out or the overall picture of standards implementation remains unclear. Revising a scope-and-sequence document describes how standards fit into the existing curriculum documents, but does not answer how to best support students as they seek to attain standards.

Standards: A Powerful Alternative

Standards are public and shared across schools and districts. Standards encompass accurate, high-quality content and skills. Standards are a balanced, coherent articulation of expectations for student learning. Standards provide the structure from which a deep and rich local curriculum can be built.

When standards replace scope-and-sequence documents, the local curriculum reflects

- Decisions about the standards, at which grade levels they will be taught and assessed, and how often.
- Student assessment profiles showing which information about student learning will be recorded and kept over time.
- Instructional guidelines articulating the school’s or district’s commitment to approaches designed to support student learning in relation to the identified standards.
- A resource bank of high-quality standards-based classroom assessments, units of study, and published materials that can be shared and used across classrooms and schools.

Who Is Responsible for What?

Decisions about where the standards will be taught and assessed are at the heart of a curriculum and assessment plan. How often will
the standards be taught? At what grade levels? In what courses? Cross-grade committees, grade-level teams, high school departments, and other groups can make preliminary decisions in these areas using a database of information about who teaches and assesses which standards (see Chapter 1). Groups also can start with recommendations from representative teachers about what should be taught and assessed at what points throughout the system. Once a draft is created, the whole faculty needs to review the plan. Are the standards appropriately placed? Are there any undesirable gaps or overlaps? Are there issues that need to be addressed? Figure 2.1 (pp. 21–22) shows a page from the decisions made by one district.

In our experience, individual schools often expand work done at the district level. For example, many high schools soon realize that the standards they are assigned to teach are not taught and assessed for all students in their current delivery system. At one small rural high school, members of the science department discovered that all of the standards assigned to science in the curriculum and assessment plan were, in fact, taught in the existing physics course. The problem was that only eight students took that course each year.

Sometimes it is easier to track an issue by comparing the curriculum and assessment plan with the standards that are already taught and assessed in each course within a department. Figure 2.2 (pp. 23–24) shows the status of standards taught in various science courses in one high school.

Similarly, elementary and middle schools need to take the district curriculum and assessment plan and identify the themes and topics that will be used in the school for teaching and assessing standards. It is important to track these themes and topics directly against the district document, however, or standards easily get lost in the process.
FIGURE 2.1

Curriculum and Assessment Plan Example

This is part of a curriculum and assessment plan developed using standards linking. The plan indicates what standards and evidence will be taught and assessed in each of four academic disciplines.

- **X** = Skills should be taught and assessed
- **A** = Skills should be assessed in this subject area
- **I** = Skills should be instructed in this subject area
- **STD** = Standards

WSWSU Draft Curriculum #2 8/29/99

<table>
<thead>
<tr>
<th>Science</th>
<th>Math</th>
<th>English</th>
<th>Social Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

COMMUNICATION

1.1 **Std** Reading Strategies
- Students use a variety of strategies to help them read. This is evident when students use a combination of strategies including:

1.1a **K-4** Sounds, syllables, and letter patterns (e.g., phonological, phonic, and graphic knowledge)

1.1b **K-4** Syntax

1.1c **K-4** Meaning in context

1.1d **K-4** A range of cueing systems to discover pronunciation and meaning

1.1e **K-4** Self-correcting when subsequent reading indicates an earlier miscue

- X
- X
- X
- X
- X
- X
- X
- X
- X
- X
- X
- X
Figure 2.1—continued

Curriculum and Assessment Plan Example

<table>
<thead>
<tr>
<th>WSWSU Draft Curriculum #2 8/29/99</th>
<th>Science</th>
<th>Math</th>
<th>English</th>
<th>Social Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1f K–4 Questioning</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>1.1g K–4 Prior knowledge of the topic and sense of story</td>
<td></td>
<td>X</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>1.1h 5–8 Predicting</td>
<td></td>
<td></td>
<td></td>
<td>X X X X</td>
</tr>
<tr>
<td>1.1i 5–8 Skimming</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>1.1j 5–8 Following themes</td>
<td></td>
<td></td>
<td></td>
<td>X X X X</td>
</tr>
<tr>
<td>1.1k 5–8 Previewing for book selection (e.g., for content, form, style)</td>
<td></td>
<td>X</td>
<td></td>
<td>X X X X X X X X</td>
</tr>
</tbody>
</table>

Source: Windsor Southwest Supervisory Union (Chester, VT) and the Center for Curriculum Renewal.
High School Science Example

The table shows the science classes (listed across the top) offered at a high school, as compared with the topics of the standards (listed down the side). A similar process is used in each academic area to determine which standards are covered in each class.

<table>
<thead>
<tr>
<th>Science Class Standard</th>
<th>Physical Science</th>
<th>Earth Science</th>
<th>Biology</th>
<th>Chemistry</th>
<th>Science and Technology</th>
<th>AP Biology</th>
<th>Advanced Biology</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>7.1cc</td>
<td>7.1cc</td>
<td>7.1cc</td>
<td>7.1cc</td>
<td>7.1cc</td>
<td>7.1aaa</td>
<td>7.1aaa</td>
<td>7.1aa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1ii</td>
<td>7.1bb</td>
<td>7.1bb</td>
<td>7.1bb</td>
<td>7.1bb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1dd</td>
<td>7.1dd</td>
<td>7.1dd</td>
<td>7.1dd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1hh</td>
<td>7.1hh</td>
<td>7.1hh</td>
<td>7.1hh</td>
</tr>
<tr>
<td>7.2</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
<td>7.2aa</td>
</tr>
<tr>
<td>7.3</td>
<td>7.3aa</td>
<td>7.3aa</td>
<td>7.3aa</td>
<td>7.3aa</td>
<td></td>
<td>7.3aa</td>
<td>7.3aa</td>
<td>7.3aa</td>
</tr>
<tr>
<td>7.4</td>
<td>7.4aa</td>
<td>7.4aa</td>
<td>7.4aa</td>
<td>7.4aa</td>
<td></td>
<td>7.4aa</td>
<td>7.4aa</td>
<td>7.4aa</td>
</tr>
<tr>
<td>7.5</td>
<td>7.5aa</td>
<td>7.5aa</td>
<td>7.5aa</td>
<td>7.5aa</td>
<td></td>
<td>7.5aa</td>
<td>7.5aa</td>
<td>7.5aa</td>
</tr>
<tr>
<td>7.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.11aaa</td>
<td>7.11aaa</td>
<td>7.11aa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.11cc</td>
<td>7.11cc</td>
<td>7.11cc</td>
</tr>
<tr>
<td>7.12</td>
<td>7.12ddd</td>
<td>7.12dd</td>
<td>7.12ddd</td>
<td>7.12ddd</td>
<td></td>
<td>7.12aaa</td>
<td>7.12aaa</td>
<td>7.12aaa</td>
</tr>
<tr>
<td></td>
<td>7.12dd</td>
<td>7.12ee</td>
<td></td>
<td>7.12ee</td>
<td></td>
<td>7.12bb</td>
<td>7.12bb</td>
<td>7.12bb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.12cc</td>
<td>7.12cc</td>
<td>7.12cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.12ddd</td>
<td>7.12ddd</td>
<td>7.12ddd</td>
</tr>
<tr>
<td></td>
<td>7.13bbb</td>
<td>7.13ccc</td>
<td>7.13dd</td>
<td>7.13dd</td>
<td></td>
<td>7.13bb</td>
<td>7.13bb</td>
<td>7.13bb</td>
</tr>
<tr>
<td></td>
<td>7.13dd</td>
<td>7.13ccc</td>
<td>7.13ddd</td>
<td>7.13ddd</td>
<td></td>
<td>7.13cc</td>
<td>7.13cc</td>
<td>7.13cc</td>
</tr>
</tbody>
</table>
High School Science Example

<table>
<thead>
<tr>
<th>Science Class Standard</th>
<th>Physical Science</th>
<th>Earth Science</th>
<th>Biology</th>
<th>Chemistry</th>
<th>Science and Technology</th>
<th>AP Biology</th>
<th>Advanced Biology</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.15</td>
<td>7.15aaa</td>
<td>7.15bbb</td>
<td>7.15ccc</td>
<td>7.15ddd</td>
<td>7.14aaa</td>
<td>7.14bbb</td>
<td>7.14ccc</td>
<td>7.14ddd</td>
</tr>
<tr>
<td>7.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courtesy of Brian O’Regan, Superintendent, Chittenden South Supervisory Union
 Standards and Spiraling

The fundamental decision in developing standards-based curriculum is assigning standards to specific grade levels, courses, or classroom settings. However, repeating standards also involves careful decision-making. Two common complaints about curriculum in the United States relate to repetition. In some subject areas, such as science and social studies, the curriculum is described as “a mile wide and an inch deep.” And the fact that U.S. 4th graders perform well in international comparisons, while 8th and 10th graders do less well, is partially attributed to repetition at the same level of complexity, rather than moving to complex content and concepts (Third International Mathematics and Science Study, 1998).

Standards are frequently written in grade-level clusters (such as K–4, 5–8, and 9–12), therefore educators must decide which standards should be repeated at specific grade levels and in certain courses. One of the most effective ways to repeat standards is through a spiral curriculum. In a standards-based spiral curriculum, students return to certain standards and evidence at prescribed intervals. However, the standards are taught and learned at a higher level of complexity with each repetition. There are three ways to increase the complexity of standards and evidence:

- Increase the complexity of the content.
- Increase the complexity of how students interact with the content.
- Increase both the complexity of student interaction with the content and the complexity of the content itself.

Here is a standard and one example of accompanying evidence from Vermont’s Framework of Standards and Learning Opportunities.
Standard 1.13: Students respond to literary texts and public documents using interpretive, critical, and evaluation processes. This is evident when students:

a. Make inferences about content, events, story, characters, and setting, and about the relationship(s) among them.

This standard and evidence applies to all grades, K–12.

The complexity of the content evolves as the student matures. With the standard cited above, the student may begin with picture books, move to chapter books, biography, and textbooks, and continue with primary sources and complex scientific treatises.

The curriculum can also increase the complexity of how the student interacts with the content. A young student might begin at enumeration, listing events, character, and setting. As she matures, she might identify relationships among the elements listed in the evidence. Later, she might make inferences based on these relationships, develop hypotheses, and verify predictions through extended research.

Unlike the previous example, all standards and evidence do not remain constant over the K–12 spectrum. Figure 2.3 shows an example of how the Georgia Framework for Learning Mathematics and Science spirals the concept of number systems.

Everyday Mathematics, developed by the University of Chicago School Mathematics Project, introduces negative numbers, fractions, decimals, and percents at the primary level. However, "prior to fourth grade, negative numbers, fractions, decimals, and percents were used mainly to convey information, without becoming involved in operations such as addition, subtraction, and division" (University of Chicago School Mathematics Project, 1995). This is an example of spiraling complexity of application of content; in Georgia schools implementing Everyday Math, the content is
introduced prior to students’ responsibility to perform in relation to the standard. Figure 2.4 contains questions that may be used in making decisions related to spiraling.

FIGURE 2.3

Spiraling Concept Sample

A concept may spiral through the curriculum, increasing in depth and complexity, as students mature and gain experience and expertise in the content. The following example of a spiraling concept is for mathematics and shows how students learn about the number system.

Primary: Understand the numeration system by relating counting, grouping, and place value.

Elementary: Extend the number system to include fractions, decimals, and integers.

Middle Grades: Extend the development of the number system through the use of integers.

High School: Compare and contrast the real number systems and its various subsystems with regard to their structural characteristics.

Adapted from Georgia Initiative on Math and Science, 1997

The answers to the questions in Figure 2.4 should guide you in determining what standards and evidence to spiral. They should also help to address the two criticisms discussed at the beginning of this section: By returning to fundamental standards it is possible to limit the scope of the curriculum and to increase its depth, thus building a richer, focused curriculum.

The Student Assessment Profile

The K–12 Student Assessment Profile is a compilation of assessment information for each student. The profile contains a selection of assessments that highlight and track student performance and progress over time toward meeting standards. The profile
Figure 2.4

Sample Spiraling Questions

The following questions may help curriculum developers to build spiraling into standards linking.

Which standards and evidence will be spiraled in the standards-based curriculum?

The general rule of thumb is that each standard and evidence will be experienced at least once per grade level cluster. Typically, this commitment will consume the most teaching and learning time. Selection of standards for spiraling should be confined to those that are at the foundation of the disciplines, such as inquiry for science or map skills for social studies, and to those cutting across disciplines, such as communication, problem solving, and personal development. Rarely is there time or justification for spiraling specific content areas, such as dinosaurs or the Civil War within a grade level cluster; however, these may well be revisited across clusters.

How will students experience the standards and evidence at each level?

The purpose of spiraling is to increase the complexity of content and of the application of that content over time. Make sure that the repetition of the standard and evidence isn’t more of the same, at the same level of complexity. Pay attention to developmental progression. For example, how might a 5th grader and an 8th grader differ in their approach to civic and social responsibility? Given this developmental progression, what experiences might be provided at each grade level?

What ways will students apply the standard at each level?

As each of the examples above illustrated, returning to a standard generally implies a different level of application of principles. How will students use what they have learned? Is this substantively different from the first experience?

What ways will the student critically examine the standard at each level?

Finally, are there fundamental differences in how the student can examine the standards and evidence upon returning to them? Can they make finer distinctions between similarities and differences? Can they predict consequences or explain phenomena at a different level?

Center for Curriculum Renewal
paints a picture of student performance, and it complements the
decisions made about classroom assessments that are shown in the
curriculum and assessment plan. The Student Assessment Profile is
NOT the results of all, or even of most, assessments in which a stu-
dent takes part in the classroom. Instead, the profile is a manage-
able, efficient, small sampling of assessment information about
each student, captured over time. The Student Assessment Profile

- Informs parents, teachers and students of student progress
toward meeting selected standards.
- Includes selected assessments that measure chosen standards
across the grades from K–12 in a balanced distribution by grade and
content.
- Can be used to look at the effectiveness of programs over time,
as well as to look at student progress toward meeting standards.
- Assesses standards that are representative of the whole set of
standards, and of all grade levels.

We worked with one district that engaged a cross-grade-level
committee of teachers and administrators in five day-long meetings
to create their student assessment profile. The following informa-
tion describes what the committee accomplished in each session.
You may be able to adapt this to the work in your school.

Session 1

- Developed a common understanding of a student assessment
profile.
- Shared existing assessments currently used in the district.
- Identified standards to include in the profile.

Session 2

- Completed initial identification of standards for the student
assessment profile.
• Reviewed potential assessments, which assess standards we identified.

Session 3
• Prioritized which standards will be assessed and when and where they will be assessed for grades K–12.
• Completed a first draft of the Student Assessment Profile.
• Determined a process for gathering feedback from colleagues.

Session 4
• Reviewed feedback from colleagues.
• Revised the student assessment profile to be more realistic.
• Refined the comprehensive assessment plan (See Chapter 4) by incorporating decisions made about the student assessment profile, considering whether other information is needed about student results, and making decisions about what data to collect about available resources and the actual implementation of programs and practices.

Session 5
• Finalized the student assessment profile.
• Generated recommendations for phasing in the student assessment profile and identifying professional development needs.
• Identified implementation needs specific to each school.

The committee’s first draft of standards and possible assessments was lengthy, but the list gave them a place to start considering what would work best. Possible assessments were drawn from a Web site developed using Goals 2000 Funds by the Vermont Standards and Assessment Consortium (http://www.dbweb.ed.state.vt.us/arb). Other suggestions came from committee members. Existing state assessments were included as well (see Figure 2.5).
Figure 2.5

Student Assessment Profile

The following table shows the decisions made by a school district in developing a student assessment profile through standards linking. These decisions were related to one standard (reading accuracy) across all grade levels, K–12. Similar decisions are made for other standards and evidence.

<table>
<thead>
<tr>
<th>Potential Standards to Include in Profile</th>
<th>Possible Assessments</th>
<th>Other Assessments/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Language Arts</td>
<td></td>
</tr>
<tr>
<td>1.2 (Reading Accuracy)</td>
<td>• Oral Reading Fluency Scoring Guide—3rd Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grade 2 Vermont Development Mental Reading Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Primary and 2–4 Literacy/Communication Profiles by Biggam, Herman, and Trubisz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K–4 Texas Primary Reading Inventory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K–12 Information Literacy Rubrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple Subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K–12 The Literacy Challenge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5–8 Williston Student Engagement Rubrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K–12 Communication of Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 9–12 Golden State Exam Science Portfolio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5–8; 9–12 Vermont History Projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K–12 Riverside Performance Assessment Series</td>
<td></td>
</tr>
</tbody>
</table>

Source: Windsor Southwest Supervisory Union and the Center for Curriculum Renewal
The committee then used an assessment checklist adopted by the Vermont Standards and Assessment Consortium to select only the highest quality assessments to include in the student assessment profile (see Figure 2.6, pp. 34–35). This checklist was adapted from Joan Herman’s “Technical Quality Matters” (1996). The checklist is intended to provide a profile of an assessment tool in relation to identified standards. A single “No Response” would not, in most cases, remove a tool from consideration.

In the end, the committee divided the profile into grade-level blocks: K–2, 3–4, 5–6, and 7–12. They created forms for each grade-level block for tracking assessment information for each student. At the time of this writing, the district is in the process of converting these forms to online templates to simplify record keeping, to save time, and to provide easier access for appropriate educational personnel. Figure 2.7 (pp. 36–37) shows an excerpt from the Grades 3–4 profile focused on literacy standards.

In creating your own student assessment profile, consider the following questions:

- Are the assessed standards representative of the whole set of standards?
- Is the number of standards included a reasonable number?
- Are the assessments of high quality?
- What will be the impact of these assessments on the students who participate in them?
- Will the information provided be useful feedback to students and parents?
- Will the information provided be useful in instructional planning and program improvement?
- Does the profile, as a whole, accurately reflect student performance over time?
Figure 2.6

Assessment Checklist

This checklist can be used to develop a profile of an assessment considered for use in the student assessment profile. The checklist may also be used in developing a comprehensive assessment plan.

Consequences
- Is the assessment worth the instructional time?
- Does the assessment encourage good instruction as defined by the district’s instructional guidelines?
- Does the assessment support a curricular focus related to the standards and instructional guidelines?

Fairness
- Does the assessment provide exemplars appropriate to the level for which it is designed?
- Does the assessment provide ample time for students to finish so that results reflect capability rather than test-taking skill?
- Does the assessment tap the knowledge and skills students have had an adequate opportunity to acquire during classroom instruction?
- Is the assessment free of cultural, ethnic, and gender stereotype?
- Is the assessment free of tasks or situations more familiar to students of one background or gender than another?
- Does the assessment use a scoring process applied without bias?
- Does the assessment avoid unnecessarily difficult language when assessing content from the standards?
- Does the assessment enable all students to demonstrate what they know and can do in the areas being assessed?
- Can necessary accommodations be used?

Reliability and Validity
- Does the assessment describe the standards it intends to assess?
- Does the assessment represent the intended standards?
- Does the assessment provide evidence that the results are generalizable—are indicative of student performance in a broader domain of knowledge?
- Does the assessment design include consideration of the number of tasks a student must complete in order to yield generalizable results?
- Does the assessment include explicit criteria for scoring and preferably a guide describing the application of these criteria?
- Does the assessment provide evidence that results are consistent across raters and across scoring occasions?
Assessment Checklist

Cognitive Complexity
- Does the assessment use tasks for which students can be expected to have adequate background knowledge?
- Does the assessment use tasks whose solutions cannot be memorized in advance?
- Does the assessment assess key concepts and principles from the standards?
- Does the assessment provide evidence that tasks elicit complex understanding or problem-solving skills?

Content Quality and Coverage
- Does the assessment use tasks consistent with the instructional guidelines?
- Has the assessment been reviewed by content experts to ensure quality, accuracy, and disciplinary and interdisciplinary appropriateness of tasks?
- Does the assessment format reflect classroom practice?

Meaningfulness
- Does the assessment provide useful information for students, parents, and teachers?
- Is the assessment credible to teachers, students, parents, and the public as a valid indicator of student competence in the particular assessment area?
- Does the assessment engage and motivate students to do their best?

Cost and Efficiency
- Is the assessment administratively feasible?
- Is the assessment cost-efficient?

Adapted from the work of Joan Herman; permission from The Vermont Standards and Assessment Consortium and the Center for Curriculum Renewal

Implications for the Classroom

In the process of developing the curriculum and assessment plan and the student assessment profile, questions frequently arise about classroom assessment. What does it mean to say we will assess this standard at this grade level? Are we using the right sort of assessments? How do we create assessments to align with standards?
The Curriculum and Assessment Plan

Classroom assessment is much more than tests, rubrics, and giving grades. Assessment is an integral part of instruction. Assessment is the process of quantifying, describing, gathering data about, or giving feedback about performance. The primary purpose of standards-based classroom assessment is to inform teaching and improve learning. In addition, assessment

- Guides the process of changing and improving education.
- Determines the success of individual students, specific curricula, and institutional practice.
- Determines if students have integrated knowledge and skills across the curricula.
- Provides methods and data to effectively communicate results.

Effective classroom assessments are ongoing and relevant to immediate learning, as well as

- Comprehensive
 - Each component is part of a whole system.
 - Addresses needs of a variety of audiences.
 - Addresses student strengths as well as problems.
 - Examines results within and across curricula.
- Inclusive
 - Multifaceted and flexible.
 - Developmentally and culturally appropriate.
 - Addresses learning styles and multiple intelligences.
 - Involves the student in self-assessment.
- Technically Sound
 - Continuous and ongoing.
 - Valid and reliable.
 - Reported accurately.
Figure 2.7

Grades 3–4 Profile Example

This is an example of page from a student assessment profile. The word “score” is a placeholder for actual student scores. In some instances, student performance sheets are attached to the profile. A gray block indicates that the assessment is not used at the time and grade level indicated.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Vermont Standard</th>
<th>Grade 3 Fall</th>
<th>Grade 3 Winter</th>
<th>Grade 3 Spring</th>
<th>Grade 4 Fall</th>
<th>Grade 4 Winter</th>
<th>Grade 4 Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal Reading Inventory</td>
<td>1.1</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
</tr>
<tr>
<td>Word recognition</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Burns and Roe</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informal Reading Inventory Comprehension</td>
<td>1.1</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
</tr>
<tr>
<td>Using Burns and Roe</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achievement Test</td>
<td>Cross-check when new test is selected</td>
<td>score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Standard Exam English and Language Arts</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Attach student sheet</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 2.7—continued

Grades 3-4 Profile Example

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Vermont Standard</th>
<th>Grade 3 Fall</th>
<th>Grade 3 Winter</th>
<th>Grade 3 Spring</th>
<th>Grade 4 Fall</th>
<th>Grade 4 Winter</th>
<th>Grade 4 Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genre Tracking Sheet (Database is on computer — print and attach completed form)</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spelling Assessment</td>
<td>1.6</td>
<td>score</td>
<td></td>
<td>score</td>
<td>score</td>
<td>score</td>
<td>score</td>
</tr>
<tr>
<td>Writing Prompt (Score using rubrics for narratives and conventions)</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing Portfolio</td>
<td>1.8</td>
<td>Narrative Score:</td>
<td>Responses to Literature Score:</td>
<td>Procedures Score:</td>
<td>Reports Score:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Windsor Southwest Supervisory Union and the Center for Curriculum Renewal
When planning for assessment, consider the bigger picture. This means developing an assessment plan. An assessment plan is a design tool, a set of choices regarding how student learning will be assessed in relation to standards, and its use ensures that

- The feedback from implementation of an assessment plan guides the process of changing and improving instruction.
- There will be multiple opportunities for a student to demonstrate attainment of an identified standard.
- Students will produce a variety of constructed responses, such as products (written reports, diorama, map) and performances (orienteering course, interview, play). Variety of responses recognizes multiple intelligences and individual student strengths. Selected responses and short answer assessments are often also part of the plan.
- A variety of scoring guides will be used to provide feedback on student learning.

Some teachers develop assessment plans unit-by-unit and for the published materials they use. Others develop more holistic plans tied to the standards for which they are responsible. The assessment plan includes information about the products and performances to be assessed, the scoring guides that will be used for feedback, the reporting and feedback methods, and who the assessors will be. Figure 2.8 shows definitions of the assessment planning guide developed by the Vermont Department of Education. Figure 2.9 shows an example of part of an assessment plan from a science unit created by Nicole Pfister, a 6th grade teacher at the Flood Brook School in Londonderry, Vermont.

How to Use Standards in the Classroom (Harris & Carr, 1996) provides additional useful information about design of scoring guides and units of study. Planning for instruction in and assessment of standards in the classroom is an important step in the
process of implementing standards in a school or district. In the next chapter, we turn our attention to the question, “What opportunities to learn do students need if all students are to attain the standards?”

Figure 2.8
Assessment Planning Guide

This assessment planning guide can be used in action planning. The columns represent four types of assessments (selected response and three types of constructed responses). For each type of assessment, three types of information are provided: a definition, a description of the type of scoring guide used to collect student data, and the form in which results are reported to students, parents, and others.

<table>
<thead>
<tr>
<th>What the Student Produces</th>
<th>Selected Response</th>
<th>Constructed Response: Short Answers</th>
<th>Constructed Response: Products</th>
<th>Constructed Response: Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Student selects from among responses that are presented</td>
<td>The student must create a response or answer</td>
<td>Documents or artifacts created by students</td>
<td>Demonstrations and interactions carried out by students</td>
</tr>
<tr>
<td>Scoring Guides</td>
<td>Answer key machine scoring template</td>
<td>Generalized or task-specific rubric checklist</td>
<td>Generalized or task-specific rubric checklist</td>
<td>Generalized or task-specific rubric checklist</td>
</tr>
<tr>
<td>Reporting or Feedback</td>
<td>Numerical score: percentages, total points letter grades narrative report (written) checklist comments verbal</td>
<td>Numerical score: percentages, total points letter grades narrative report (written) checklist comments verbal</td>
<td>Numerical score: percentages, total points letter grades narrative report (written) checklist comments verbal</td>
<td>Numerical score: percentages, total points letter grades narrative report (written) checklist comments verbal</td>
</tr>
</tbody>
</table>

Source: Vermont Department of Education, 1999
Figure 2.9

Example of an Assessment Plan

This assessment plan was developed by a 6th grade teacher for a science unit. In this example, the teacher did not use selected response assessments. Although exams and quizzes may include selected responses, in this case the items on the exams and quizzes were all constructed response items. The plan indicates the types of scoring guides used for each assessment.

<table>
<thead>
<tr>
<th>What the Student Produces</th>
<th>Selected Response</th>
<th>Constructed Response: Short Answers</th>
<th>Constructed Response: Products</th>
<th>Constructed Response: Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 7.1</td>
<td></td>
<td>• Exam</td>
<td>• Cooperative lab activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quiz</td>
<td>• Rubric</td>
<td></td>
</tr>
<tr>
<td>Standard 7.12 Matter, Motion, Forces, and Energy</td>
<td>• Exam</td>
<td>• Research project • Essay</td>
<td>• Cooperative lab activities</td>
<td></td>
</tr>
<tr>
<td>Scoring Guides</td>
<td>• Answer key for exam and quiz</td>
<td>• Rubric for research project • Rubric for essay</td>
<td>• Rubric for cooperative lab activities</td>
<td></td>
</tr>
</tbody>
</table>

Nicole Pfister, Flood Brook School